Session Authentication
Overview

Server

v

Server authenticates username and
password, generates token and

sends token to client

Server uses token to validate
requests and determine effective

uid/gid for operations

Server invalidates token

Protection Against Common Attacks:

Thursday, September 26, 2002

User Enters Username / Password

PAM module sends token request

o All file-system requests are

A

" accompanied by session token for

identification

User logs off

Client cannot “impersonate” tokens by generating them as server must generate tokens unique to each session. Tokens that accompany requests but
are NOT in the list of previously generated and valid tokens result in error and indicate either an attempt at fraudulent connection, or a session who’s

TTL has passed.

Client-Server network protocol should take place over an encrypted channel, preventing file-system traffic from being monitored.

The server should be able to associate a given host X with a unique token Y - to the exclusion of the same token Y from another host. This prevents a
rogue machine from acquiring a token through monitoring a session and using it to “act” as the client. Such identification will have to be at the TCP/IP

packet level or lower.

»

Page 1




Session Detail

Thursday, September 26, 2002

Server Machine(s) Client Machine(s)
— < > Root attempts to mount from server,
11 connects-to-TCP-112-to-ensure server
— Server checks XML config to ensure that the exists and authorization-is-given

client IP is an authorized host (TCP:112)

User enters username / password, or su, or other effective UID
change takes place

121
— PAM module sends token request
after reading XML config for specific username/
Server authenticates username and pass mappings and other options
password (via PAM), generates token and
sends token to client. Token and client info is
then stored in local list (port TCP:112)
Server also invalidates tokens when user >
log’s off. PAM module receives and stores UID:TOKEN pair
in /proc system (rw------- root)
Server manages # of threads based on # of
tokens in token list, adding threads as
necessary to account for load. Also manages
collating and reporting statistics/logging/etc
—
13!

Kernel Module: VFS file-system requests are
sent to TCP:113 along with token for
verifitcation in XML+payload protocol

[=]

Thread

Thread

mZ:I::t; follgs Thread |nz\(;?rl1t:1 folgs
reques?on Waits for reques?on
. incoming FS .
A AN
andles TCP:113 and andies

User logs off, PAM removes token, tells

handles it
token server to invalidate token.

1) Server: This is a user mode (run as root) daemon that:
- Listens for and handles token requests/invalidations
- Manages threads that are responsible for parsing and acting on the file-system requests made by the VFS client(s). Network protocol will

be XML, with payload packets separate (XML = control language). All file-system action will be taken only if:

A. Request packet token == server’s token
B. Request packet IP == stored IP
C. Effective UID/GID has appropriate permission

2) PAM Module: PAM module will be responsible for:
A: Obtaining and using servers SSL cert for secure token communication

B: Contacting Token server (1) and requesting a token
C: Receiving token request response and storing valid UID:Token pairs in the /proc filesystem (/proc/??? Created by (3))

D: Sending token invalidation information when a user logs out or a session ends

3) Kernel mode VFS module: This module will be responsible for translating all filesystem requests into XML control + payload packets to be sent to the
SNFS server (and receiving responses from same server). SSL certificate retrieved by PAM module should be used to encrypt each control + payload

packet.

»

Page 2



Remaining Issues

Thursday, September 26, 2002

1) VFS Kemnel module to SNFS server communication:

A file descriptor is created and used in the PAM->Server communication process - and ideally the kernel module could then use the|same
descriptor for further communication with that “session’s” daemon, however, | am unsure as to how a file descriptor can be passed to the kernel.module
at runtime on a per-session basis. Is it possible to somehow write the descriptor out to the /proc system in the same place/manner as the token?

SOLVED - Kernel will initiate a new connection with TCP:113 for every request

2) Client permission’s listing:

On the client side, when a listing or other examination of a snfs mount is done, how do we best display permissions? i.e. User permissions
can be easily displayed/provided by using the local users uid in the response, however, gid’s may not be consistent between client and server. Perhaps
this is best left as an option, allowing the user to:

- Map gid's (much like mapping users) similar to local=remote so:
100=200
would display remote gid 200 as local gid 100
- Map all gid’s to a single local gid (nobody, or some other) - DEFAULT
- etc.

This may simply be a matter of providing as much flexibility as possible in configuration - followed by extremely careful and explicit documentation.

3) Cross-platform issues:
Less of an “issue” but something that should be noted from the start, the more x-platform we can make this the better for obvious reasons,
what steps can we take to best ensure such portability? Obvious answers:
- Byte ordering should either be neutral (ala network order) or #ifdef'd in the source according to various platforms.
- Server and PAM module code should be as modular as possible - made possible mostly by the use of OOP
The server and pam sections of code may be the easiest to port, while the vfs modules the hardest due to its interdependency with the OS
kernel. There may simply not be a way around this beyond coding a single vfs module at a time, then hand-porting the code to new architectures.

»

Page 3




